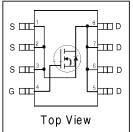
PD-95023C

International TOR Rectifier

IRF7811WPbF

HEXFET® Power MOSFET for DC-DC Converters

- N-Channel Application-Specific MOSFETs
- Ideal for CPU Core DC-DC Converters
- Low Conduction Losses
- · Low Switching Losses
- 100% Tested for Rg
- Lead-Free


Description

This new device employs advanced HEXFET Power MOSFET technology to achieve an unprecedented balance of on-resistance and gate charge. The reduced conduction and switching losses make it ideal for high efficiency DC-DC converters that power the latest generation of microprocessors.

The IRF7811WPbF has been optimized for all parameters that are critical in synchronous buck converters including $R_{\rm DS(on)}$, gate charge and Cdv/dt-induced turn-on immunity. The IRF7811WPbF offers particulary low $R_{\rm DS(on)}$ and high Cdv/dt immunity for synchronous FET applications.

The package is designed for vapor phase, infra-red, convection, or wave soldering techniques. Power dissipation of greater than 3W is possible in a typical PCB mount application.

DEVICE CHARACTERISTICS ⑤

	IRF7811WPbF							
R _{DS(on)}	$9.0 \mathrm{m}\Omega$							
$Q_{_{G}}$	22nC							
$Q_{_{\mathrm{sw}}}$	10.1nC							
Q _{oss}	12nC							

Absolute Maximum Ratings

Parameter		Symbol	IRF7811WPbF	Units
Drain-Source Voltage		V _{DS}	30	V
Gate-Source Voltage		V_{GS}	±12	
Continuous Drain or Source	T _A = 25°C	I _D	14	
Current (V _{GS} ≥ 4.5V)	T _L = 90°C		13	A
Pulsed Drain Current①		I _{DM}	109	
Power Dissipation	T _A = 25°C	P_{D}	3.1	W
	T _L = 90°C		3.0	
Junction & Storage Temperate	ure Range	T _J , T _{STG}	-55 to 150	°C
Continuous Source Current (E	Body Diode)	Is	3.8	А
Pulsed Source Current①		I _{SM}	109	

Thermal Resistance

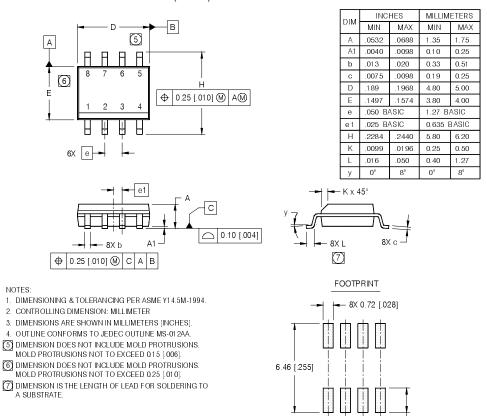
Parameter		Max.	Units
Maximum Junction-to-Ambient®	R _{eJA}	40	°C/W
Maximum Junction-to-Lead	R _{oul}	20	°C/W

IRF7811WPbF

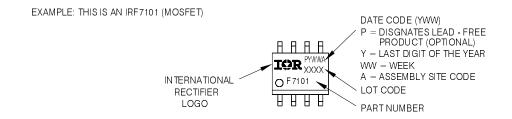
International IOR Rectifier

Electrical Characteristics

Parameter		Min	Тур	Max	Units	Conditions
Drain-to-Source Breakdown Voltage	BV _{DSS}	30	-	-	V	$V_{CS} = 0V$, $I_D = 250\mu A$
Static Drain-Source on Resistance	R _{DS(on)}		9.0	12	mΩ	$V_{GS} = 4.5 \text{V}, I_{D} = 15 \text{A} \odot$
Gate Threshold Voltage	V _{GS(th)}	1.0			V	$V_{DS} = V_{GS}, I_D = 250\mu A$
Drain-Source Leakage Current	I _{DSS}			30		$V_{DS} = 24V, V_{GS} = 0$
				150	μА	$V_{DS} = 24V, V_{GS} = 0,$
Gate-Source Leakage Current	I _{GSS}			±100	nA	$Tj = 100^{\circ}C$ $V_{OS} = \pm 12V$
Total Gate Chg Cont FET	Q _G		22	33		V _{GS} =5.0V, I _D =15A, V _{DS} =16V
Total Gate Chg Sync FET	Q _G		16.3			$V_{OS} = 5V, V_{DS} < 100 \text{mV}$
Pre-Vth Gate-Source Charge	Q _{GS1}		3.5			$V_{DS} = 16V, I_{D} = 15A, V_{GS} = 5.0V$
Post-Vth Gate-Source Charge	Q _{GS2}		1.2		nC	
Gate to Drain Charge	Q_{GD}		8.8			
Switch Chg(Q _{qs2} + Q _{qd})	Q _{sw}		10.1			
Output Charge	Q _{oss}		12			V _{DS} = 16V, V _{GS} = 0
Gate Resistance	R_{G}		2.0	4.0	Ω	
Turn-on Delay Time	t _{d (on)}		11			$V_{DD} = 16V, I_{D} = 15A$
Rise Time	ţ		11		ns	V _{GS} = 5.0V
Turn-off Delay Time	t _{d (off)}		29			Clamped Inductive Load
Fall Time	t _f		9.9			
Input Capacitance	C _{iss}	-	2335	-		
Output Capacitance	Coss	-	400	-	рF	$V_{DS} = 16V, V_{GS} = 0$
Reverse Transfer Capacitano	ce C _{rss}	_	119	_		


Source-Drain Rating & Characteristics

Parameter		Min	Тур	Max	Units	Conditions
Diode Forward Voltage*	V _{SD}			1.25	٧	$I_{_{\rm S}} = 15 {\rm A} \odot, V_{_{\rm OS}} = 0 {\rm V}$
Reverse Recovery Charge⊕	Q _{rr}		45		nC	di/dt ~ 700A/ μ s V _{DS} = 16V, V _{OS} = 0V, I _S = 15A
Reverse Recovery Charge (with Parallel Schottky)	Q _{rr(s)}		41		nC	di/dt = $700A/\mu s$ (with 10BQ040) $V_{DS} = 16V$, $V_{GS} = 0V$, $I_{S} = 15A$

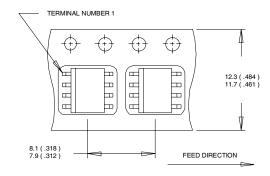

- Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
 Pulse width \leq 400 µs; duty cycle \leq 2%.
 When mounted on 1 inch square copper board
 Typ = measured Q_{oss}
 Typical values of $R_{DS}(on)$ measured at $V_{GS} = 4.5V$, Q_{GS} , Q_{SW} and Q_{OSS} measured at $V_{GS} = 5.0V$, $I_{F} = 15A$.

SO-8 Package Outline(Mosfet & Fetky)

Dimensions are shown in milimeters (inches)

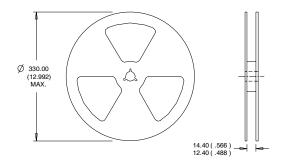
SO-8 Part Marking Information

3X 1.27 [.050] —


8X 1.78 [.070]

IRF7811WPbF

International IOR Rectifier


SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
 - Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market.

International IOR Rectifier